
Chapter 5.11: Implementing File Systemsp p g y

File-Systems Structure
File Implementation

Contiguous Allocationg

Linked Allocation

Indexed Allocation

Directory Implementation

BufferingBuffering

Log-Structured Files Systems

Betriebssysteme WS 09/10

5 Storage Management

2 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

A T i l Fil t O i tiA Typical File-system Organization

Volume

Betriebssysteme WS 09/10

5 Storage Management

3 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Volume

Disk Structure

Disk can be subdivided into partitionsDisk can be subdivided into partitions

Disks, partitions1 can be RAID protected against failure

Disk or partition can be used raw – without a file system,
or formatted with a file system (FS)

Entity containing a FS known as a volume

Each volume containing a FS also tracks that FS’s info in g
device directory or volume table of contents

As well as general-purpose FSs there are many special-g p p y p
purpose FSs, frequently all within the same operating
system or computer

Betriebssysteme WS 09/10

5 Storage Management

4 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

1Partitions also known as minidisks, slices

Implementing Files

8

7 3 4 36 7

6

5

4

3 2

???

2

1

0 5

8

0

File with a set of

1

Disk with allocated and free

Betriebssysteme WS 09/10

5 Storage Management

5 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

File with a set of
logical file blocks (records)

Disk with allocated and free
physical disk blocks

Implementing a FS on Diskp g

Possible FS layout per partition

Sector 0 of disk = MBRSector 0 of disk MBR
Boot info (if PC is booting, BIOS reads in and executes MBR)

Disk partition info

Betriebssysteme WS 09/10

5 Storage Management

6 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Sector 0 of partition is volumen boot record

Layered File Systemy y

Betriebssysteme WS 09/10

5 Storage Management

7 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

A Typical File Control Blockyp

Betriebssysteme WS 09/10

5 Storage Management

8 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

In-Memory File System Structuresy y

Betriebssysteme WS 09/10

5 Storage Management

9 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Virtual File Systems

Virtual File Systems (VFS) provide an object-oriented way
of implementing file systemsof implementing file systems.

VFS allows the same system call interface (the API) to beVFS allows the same system call interface (the API) to be
used for different types of file systems.

The API is to the VFS interface, rather than any specific
type of file system.type of file system.

Betriebssysteme WS 09/10

5 Storage Management

10 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Schematic View of Virtual File Systemy

Betriebssysteme WS 09/10

5 Storage Management

11 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Implementing Filesp g

FS must keep track of some meta data
Which logical block belongs to which file?Which logical block belongs to which file?

In what order are the blocks form the file?

Which blocks are free for the next allocation?

Given a logical region of a file, the FS must identify the
corresponding block(s) on diskp g ()

Needed meta data stored in
File allocation table (FAT)
DirectoryDirectory
Inode

Creating (and updating) files might imply allocating g (p g) g p y g
new blocks (and modifying old blocks) on the disk

Betriebssysteme WS 09/10

5 Storage Management

12 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Allocation Policies

Preallocation:
N d t k i i f fil t ti tiNeed to know maximum size of a file at creation time
(in some cases no problem, e.g. file copy etc.)

Difficult to reliably estimate maximum size of a fileDifficult to reliably estimate maximum size of a file

Users tend to overestimate file size, just to avoid running
out of spaceout of space

Dynamic allocation:
Allocate in pieces as needed

Betriebssysteme WS 09/10

5 Storage Management

13 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Fragment Size *g

Extremes:
Fragment size = length of fileFragment size = length of file
Fragment size = smallest disk block size (sector size)

Tradeoffs:Tradeoffs:
Contiguity speedup for sequential accesses

Many small fragments larger tables needed toMany small fragments larger tables needed to
manage free storage management as well as to support
access to files

Larger fragments help to improve data transfer

Fixed-size fragments simplify reallocation of space

*

Variable-size fragments minimize internal fragmentation,
but can lead to external fragmentation

Betriebssysteme WS 09/10

5 Storage Management

14 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

*see page size discussion

Implementing Files

3 ways of allocating space for files:
contiguous

chained

indexed

fixed block fragments

variable block fragments

Betriebssysteme WS 09/10

5 Storage Management

15 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Contiguous Allocationg

Array of N contiguous logical blocks reserved per file
(to be created)()

Minimum meta data per entry in FAT/directory
Starting block addressStarting block address

N

What is a good default value for N?What is a good default value for N?

What to do with an application that needs more than N
blocks?blocks?

Discussion similar to ideal page size
Internal fragmentation

External fragmentation

Betriebssysteme WS 09/10

5 Storage Management

16 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

 scattered disk

Scattered Disk

(a) Contiguous allocation of disk space for 7 files

Betriebssysteme WS 09/10

5 Storage Management

17 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

(b) State of the disk after files D and F have been removed

Contiguous File Allocationg

File Allocation Table

File Name Start Block Length

FileA 2 3
0 1 2 3 4

FileA

FileA
FileB
FileC
FileD

2 3
9 5

18 8
27 2

5 6 7 8 9

10 11 12 13 14
FileB

FileD
FileE

27 2
30 3

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24
FileC

FileD

Remark: To overcome

external fragmentation
25 26 27 28 29

30 31 32 33 34
FileE

 periodic compaction

Betriebssysteme WS 09/10

5 Storage Management

18 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Contiguous File Allocation
(After Compaction)(After Compaction)

File Allocation Table

File Name Start Block Length

Fil A 0 3

0 1 2 3 4
FileA FileB

FileC FileA
FileB
FileC
FileD

0 3
3 5
8 8
16 2

5 6 7 8 9

10 11 12 13 14

FileC

FileD
FileE

16 2
18 3

10 11 12 13 14

15 16 17 18 19

FileD FileE

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

Betriebssysteme WS 09/10

5 Storage Management

19 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Chained Allocation (Linked List)()

Per file a linked list of logical file blocks, i.e.
Each file block contains a pointer to next file block, i.e. the p ,
amount of data space per block is no longer a power of two,
 Consequences?
Last block contains a NIL-pointer (e.g. -1)

FAT or directory contains address of first file block

No external fragmentationg
Any free block can be added to the chain

Only suitable for sequential filesy q

No accommodation of the principle of disk locality
File blocks will end up scattered across the diskp

Run a defragmentation utility to improve situation

Betriebssysteme WS 09/10

5 Storage Management

20 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Chained Allocation (2)

Storing a file as a linked list of disk blocks

Nil

Logical/

Nil

Logical/

Betriebssysteme WS 09/10

5 Storage Management

21 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Chained Allocation (3)()

File Allocation Table

File Name Start Block Length0 1 2 3 4
FileC

...

......
FileC 5

...
15 6 7 8 9

10 11 12 13 1410 11 12 13 14

15 16 17 18 19 Remark:

20 21 22 23 24
If you only access sequentially
this implementation is quite suited.

H ti i di id l d25 26 27 28 29

30 31 32 33 34

However requesting an individual record
requires tracing through the chained block,
i.e. far too many disk accesses in general.

Betriebssysteme WS 09/10

5 Storage Management

22 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Linked List Allocation within RAM

Each file block only used for
storing file data

Linked list allocation
with FAT in RAM

Avoids disk accesses whenAvoids disk accesses when
searching for a block

Entire block is available for
data

Table gets far too large for
modern disks, modern disks,

Can cache only, but still
consumes significant RAM

Used in MS DOS OS/2Used in MS-DOS, OS/2

Similar to an inverted page table one entry per disk block

Betriebssysteme WS 09/10

5 Storage Management

23 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Similar to an inverted page table, one entry per disk block

File-Allocation Table

Betriebssysteme WS 09/10

5 Storage Management

24 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Indexed Allocation (1)()

Indexed allocation

FAT (or special inode table) contains a one-level index
table per file

Generalization n-level-index table

Index has one entry for allocated file blockIndex has one entry for allocated file block

FAT contains block number for the index

Betriebssysteme WS 09/10

5 Storage Management

25 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Indexed Allocation (2)

File Allocation Table

()

0 1 2 3 4

File Allocation Table

File Name Index Block
FileC

5 6 7 8 9

10 11 12 13 14

...

...

...

...FileC 24

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24
1
8
3
14

25 26 27 28 29

30 31 32 33 34

14
28

Betriebssysteme WS 09/10

5 Storage Management

26 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

30 31 32 33 34

Indexed Allocation (3)()

0 1 2 3 4

File Allocation Table

File Name Index Block
FileC

5 6 7 8 9
...

...

...

...
FileC 24

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24
Start Block Length

1
28

3
4

25 26 27 28 29

30 31 32 33 34

14 1

Variable sized file portion (extent)

Betriebssysteme WS 09/10

5 Storage Management

27 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

30 31 32 33 34 Variable sized file portion (extent)
in # blocks

Analysis of Indexed Allocationy

Supports sequential and random access to a file

Fragments
Block sized

Eliminates external fragmentation

Variable sized
Improves contiguity

Reduces index size

Betriebssysteme WS 09/10

5 Storage Management

28 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Indexed Allocation (5)()

Betriebssysteme WS 09/10

5 Storage Management

29 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

An example i-node

Example: UNIX (4K bytes per block)

Betriebssysteme WS 09/10

5 Storage Management

30 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Summary: File Allocation Methods

characteristic contiguous chained indexed

y

characteristic contiguous chained indexed
preallocation? necessary possible possible
fixed or variable
i f t?

variable fixed fixed variable
size fragment?
fragment size large small small medium
allocation once low to high low
frequency high
time to allocate medium long short medium
file allocation one entry one entry large mediumfile allocation
table size

one entry one entry large medium

Betriebssysteme WS 09/10

5 Storage Management

31 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Implementing DirectoriesImplementing Directories

(a) A simple directory (MS-DOS)
fi d i t ifixed size entries
disk addresses and attributes in directory entry

(b) Directory in which each entry just refers to an i-node (Unix)

Betriebssysteme WS 09/10

5 Storage Management

32 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

(b) Directory in which each entry just refers to an i node (Unix)

Implementing Directoriesp g

How to implement a Unix-like directory?

filename What to do when some entries are deleted?
N

inode

 Never reuse
 Bridge over the directory holes

 Compaction, but when? Compaction, but when?
 eager or

 lazy

Betriebssysteme WS 09/10

5 Storage Management

33 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Directory Entries & Long Filenames

Two ways of handling long file names in directory
(a) In-line

Betriebssysteme WS 09/10

5 Storage Management

34 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

(a) In line

(b) In a heap

Analysis: Linear Directory Lookupy y p

Li h f bi di t i t ffi i tLinear search for big directories not efficient

Space efficient as long as we do compaction

Either eagerly after entry deletion or

Lazily (but when?)

With variable file names deal with fragmentation

AlternativesAlternatives

(e.g., extensible) hashing

(e g B-) Tree structures(e.g., B) Tree structures

Betriebssysteme WS 09/10

5 Storage Management

35 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Hashing a Directory Lookupg y p

Method:
Hashing a file name to an inodeHashing a file name to an inode

Space for filename and meta data is variable sized

Create/delete will trigger space allocation and clearinggg p g

Advantages:
Fast lookup and relatively simple

Disadvantages:
Might be not as efficient as trees for very large directories

Betriebssysteme WS 09/10

5 Storage Management

36 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Tree Structure for a Directoryy

Method
Sort files by nameSort files by name

Store directory entries in a B-tree like structure

Create/delete/search in that B-tree

Advantages:
Efficient for a large number of files per directory

Disadvantages:
Complex

…

Not that efficient for a small number of files

More space

Betriebssysteme WS 09/10

5 Storage Management

37 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

UNIX File System Structurey

FS Cache “writes-behind”
in case of RAM pressure or
periodically or due to
system calls or commandsApplication system calls or commandsApplication

File Subsystem

Speedup due

Buffer Cache

Speedup due
to FS cache

File and FS

Character Block file block f0

File and FS
consistency problems

Betriebssysteme WS 09/10

5 Storage Management

38 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Device Drivers (e.g. disk driver)

Using a Unix Fileg

Opening a file creates a file descriptor fid

Used as an index into a process-specific table of open files

The corresponding table entry points to a system-wide file tableThe corresponding table entry points to a system-wide file table

Via buffered inode table, you finally get the data blocks

fid =open(...)

read(fid,…)

open files
per process

file table
(system wide)

inode table
(in a buffer)

Betriebssysteme WS 09/10

5 Storage Management

39 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

user address space kernel address space

Original Unix File Systemg y

Simple disk layout
()Block size = sector size (512 bytes)

Inodes on outermost cylinders1

Data blocks on the inner cylinders
Freelist as a linked list

Issues
Index is large
Fixed number of files
Inodes far away from data blocksy
Inodes for directory not close
together
Consecutive file blocks can be
anywhere
Poor bandwidth for sequential access

Betriebssysteme WS 09/10

5 Storage Management

40 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

1in very early Unix FSs inode table in the midst of the cylinders

Unix File Names

Historically (Version 7) only 14 characters

System V up to 255 ASCII characters

fil t i
Betriebssysteme WS 09/10

5 Storage Management

41 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

<filename> . <extension>

BSD FFS

Use a larger block size: 4 KB or 8 KB

Allow large blocks to be chopped into 2,4 or 8 g pp ,
fragments

Used for little files and pieces at the ends of filesUsed for little files and pieces at the ends of files

Use bitmap instead of a free listp

Try to allocate more contiguously

10% d di k10% reserved disk space

Betriebssysteme WS 09/10

5 Storage Management

42 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

BSD FFS Directory

Directory entry needs three elements:

length of dir-entry (variable length of file names)

file name (up to 255 characters)

inode number (index to a table of inodes)

E h di t t i t l t t t iEach directory contains at least two entries:

.. = link to the parent directory (forming the directory tree)

. = link to itself

FFS offers a “tree-like structure” (like Multics), supporting () pp g
human preference, ordering hierarchically

Betriebssysteme WS 09/10

5 Storage Management

43 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Unix BSD FFS Directory (2)

voluminous = colossalvoluminous = colossal

19 19

BSD directory three entries (voluminous = hardlink to colossal)

S di t ft fil l i h b d

Betriebssysteme WS 09/10

5 Storage Management

44 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Same directory after file voluminous has been removed

Unix Directories

M lti l di t t i i t t i d (h d li k)Multiple directory entries may point to same inode (hard link)

Pathnames are used to identify files
/ t / d b l t th/etc/passwd an absolute pathname
../home/lief/examination a relative pathname

P th l d f l ft t i htPathnames are resolved from left to right

As long as it’s not the last component of the pathname,
the component name must be a directorythe component name must be a directory

With symbolic links you can address files and directories with
different names You can even define a symbolic link to a filedifferent names. You can even define a symbolic link to a file
currently not mounted (or even that never existed); i.e. a
symbolic link is a file containing a pathname

Betriebssysteme WS 09/10

5 Storage Management

45 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Logical and Physical File System

/

root file system

bin etc usr

cc sh passwdgetty

mount-point

cc sh passwdgetty

/

bin include src

awk yacc stdio.h utsy

mountable file system

Betriebssysteme WS 09/10

5 Storage Management

46 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Mounting a File System

(a) Before mounting (b) After mounting

Betriebssysteme WS 09/10

5 Storage Management

47 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Logical and Physical File Systemg y y

A logical file system can consist of different physical file
systems

A file system can be mounted at any place within another file
system

When accessing the “local root” of a mounted file system, a
bit in its inode identifies this directory as a so-called mount
pointpoint

Using mount respectively umount the OS manages a so
called mount table supporting the resolution of path namescalled mount table supporting the resolution of path names
crossing file systems

The only file system that has to be resident is the root file

Betriebssysteme WS 09/10

5 Storage Management

48 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

The only file system that has to be resident is the root file
system (in general on a partition of a hard disk)

Layout of a Logical Disky g

Each physical file system is placed within a logical disk partition.
A physical disk may contain several logical partitions (or logical
disks)

Each partition contains space for the boot block, a super block,
the inode table, and the data blocks

Only the root partition contains a real boot blockOnly the root partition contains a real boot block

Border between inodes and data blocks region can be set, thus
supporting better usage of the file system

with either few large files or

with many small files

b s inode table

. . .

file data blocks

. . .

Betriebssysteme WS 09/10

5 Storage Management

49 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

border

Hard Links Symbolic Links

Hard link is another file name, i.e. another directory entry
pointing to a specific file; its inode-field is the same in all hard
links. Hard links are bound to the logical device (partition).

Each new hard link increases the link counter in file’s i-node.
As long as link counter 0, file remains existing after a rm.
In all cases, a remove decreases link counter.

Symbolic link is a new file containing a pathname pointing to
a file or to a directory Symbolic links are evaluated per accessa file or to a directory. Symbolic links are evaluated per access.
If file or directory is removed the symbolic link points to
nirwana.

You may even specify a symbolic link to a file or to a directory
currently not present or even currently not existent.

Betriebssysteme WS 09/10

5 Storage Management

50 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Unix Inode

Betriebssysteme WS 09/10

5 Storage Management

51 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Access Structure

single indirect double indirect triple indirectdirect

.

.
.
.

.

.

. .

. .

.

.
Remark:
D di th bl k i (512 B t)

.

Depending on the block size (e.g. 512 Bytes, ...)
and on the pointer length (e.g. 4 Bytes)
maximum file size is greater than 2 MB.
“Small” files are favored concerning access speed

Betriebssysteme WS 09/10

5 Storage Management

52 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

.Small files are favored concerning access speed.

Bufferingg

Di k bl k b ff d i i A t b ffDisk blocks are buffered in main memory. Access to buffers
is done via a hash table.

Blocks with the same hash value are chained togetherg

Buffer replacement policy = LRU

Free buffer management is done via a double-linked list.

head of free list

Betriebssysteme WS 09/10

5 Storage Management

53 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

hash table

UNIX Block Header

Data block in memoryDirty block,

block status flags

Data block in memoryDirty block,
Locked block etc.

block status flags

pointer to cached block

device number Used for
block number on device

I/O error status

Used for
hashing

Used by

bytes left to transfer

pair of pointers in case
of hash collisions B t th

y
disk I/O driver

of hash collisions

pair of pointers
for the free list

Between other
block headers

Betriebssysteme WS 09/10

5 Storage Management

54 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

54

UNIX Buffer Cache (1)

“Block Headers”Device List “Block Headers”Device List
(hash table)

Device#,Block#

Z

X

YY

Remark:

Free List Header

Betriebssysteme WS 09/10

5 Storage Management

55 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

X,Y, and Z are block headers of blocks mapped into the same hash table entry

Top of the LRU-stack =
most recently accessed blockUNIX Buffer Cache (2)

Device List

()

Device List
(hash table)

The other
“green” pointers
establishing the free lis
are omitted

Device#,Block#

X

Z

X

Y
“Free List Header”

forward

Betriebssysteme WS 09/10

5 Storage Management

56 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Remark: The free list contains all block headers, establishing a LRU order
Least recently
accessed block

UNIX Buffer Cache (3)()

Advantages:

reduces disk traffic

“well tuned” buffer has hit rates up to 90%well-tuned buffer has hit rates up to 90%
(according to Ousterhout 10.th SOSP 1985)

~ 10% of main memory for the buffer cache
(recommendation for old configurations)

Betriebssysteme WS 09/10

5 Storage Management

57 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

UNIX Buffer Cache (4)

Di d tDisadvantages:
Write-behind policy might lead to

data losses in case of system crash and/or

inconsistent state of the FS

 rebooting system might take some time due to fsck,
i.e. checking all directories and files of FS

Always two copies involved
from disk to buffer cache (in kernel space)

from buffer to user address space

FS Cache wiping if sequentially reading a very large

Betriebssysteme WS 09/10

5 Storage Management

58 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

file from end to end and not accessing it again

The Linux Ext2fs File Systemy

Ext2fs uses a mechanism similar to that of BSD Fast
File S stem (ffs) for locating data blocks belonging toFile System (ffs) for locating data blocks belonging to
a specific file
The main differences between ext2fs and ffs concernThe main differences between ext2fs and ffs concern
their disk allocation policies

In ffs, the disk is allocated to files in blocks of 8Kb, with
blocks being subdivided into fragments of 1Kb to store smallblocks being subdivided into fragments of 1Kb to store small
files or partially filled blocks at the end of a file
Ext2fs does not use fragments; it performs its allocations in

ll itsmaller units

The default block size on ext2fs is 1Kb,
although 2Kb and 4Kb blocks are alsoalthough 2Kb and 4Kb blocks are also
supported

Ext2fs uses allocation policies designed to place logically
adjacent blocks of a file into physically adjacent blocks on

Betriebssysteme WS 09/10

5 Storage Management

59 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

adjacent blocks of a file into physically adjacent blocks on
disk, so that it can submit an I/O request for several disk
blocks as a single operation

Ext2fs Block-Allocation Policies

Betriebssysteme WS 09/10

5 Storage Management

60 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Journaling File Systemsg y

Journaling file systems record each update to the
file system as a transaction

All transactions are written to a log
A transaction is considered committed once it is written
to the log

However, the file system may not yet be updatedo e e , t e e syste ay ot yet be updated

The transactions in the log are asynchronously
written to the file systemy

When the file system is modified, the transaction is
removed from the log

If th fil t h ll i i t tiIf the file system crashes, all remaining transactions
in the log must still be performed

Betriebssysteme WS 09/10

5 Storage Management

61 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Log-Structured File Systemsg y

Log-structured FS: use disk as a circular buffer:g

Write all updates, including inodes, meta data
and data to end of logand data to end of log

have all writes initially buffered in memory

i di ll it th ithi 1 t (1 MB)periodically write these within 1 segment (1 MB)

when file opened, locate i-node, then find blocks

From the other end, clear all data, no longer used

Betriebssysteme WS 09/10

5 Storage Management

62 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

